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A numerical exploration of the linear stability of a fluid confined between two coaxial
cylinders rotating independently and with an imposed axial pressure gradient (spiral
Poiseuille flow) is presented. The investigation covers a wide range of experimental
parameters, being focused on co-rotation situations. The exploration is made for a
wide gap case in order to compare the numerical results with previous experimental
data available. The competition between shear and centrifugal instability mechanisms
affects the topological features of the neutral stability curves and the critical surface
is observed to exhibit zeroth-order discontinuities. These curves may exhibit discon-
nected branches which lower the critical values of instability considerably. The same
phenomenon has been reported in similar fluid flows where shear and centrifugal
instability mechanisms compete. The stability analysis of the rigid-body rotation case
is studied in detail and the asymptotic critical values are found to be qualitatively
similar to those obtained in rotating Hagen–Poiseuille and spiral Couette flows. The
results are in good agreement with the previous experimental explorations.

1. Introduction
In this work, we explore the behaviour of an incompressible viscous fluid contained

between two concentric cylinders that can rotate independently about their common
axis at constant angular velocities. An axial motion is induced in the fluid by means of
an imposed axial pressure gradient. As a result, the basic flow whose linear stability
will be studied is the superposition of the azimuthal Couette flow and the axial
Poiseuille flow, Joseph (1976), usually termed spiral Poiseuille flow.

The first studies concerned with the stability of the spiral Poiseuille flow were carried
out by Chung & Astill (1977) and by Hasoon & Martin (1977). In the previous
explorations, the outer cylinder was assumed to be at rest. In Hasoon & Martin
(1977), the perturbation fields of the basic flow were assumed to be axisymmetric and
the first non-axisymmetric stability analysis was provided by Chung & Astill (1977).
In a more recent numerical and experimental investigation, reported in Takeuchi &
Jankowski (1981), both cylinders were rotating but the study was focused on three
particular values of angular speed ratios, covering three specific cases of co-rotation,
counter-rotation and outer cylinder at rest. In addition, Takeuchi & Jankowski (1981)
concluded that the axial effects induced by the pressure gradient may stabilize or
destabilize the basic flow depending on the sign of the angular speed ratio of the
cylinders. Another conclusion from the results provided in Chung & Astill (1977) and
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Takeuchi & Jankowski (1981) is that non-axisymmetric modes become dominant in
the transition as long as the axial pressure gradient is increased. A comprehensive
experimental study of the main features of the secondary patterns observed in the
spiral Poiseuille flow has been recently provided in Lueptow, Docter & Min (1992)
for the outer cylinder at rest and in a small gap geometry.

The competition between different instability mechanisms may lead to complex phe-
nomena like stability turning points, hysteresis, multiple minima, and discontinuous
changes in the critical values. Examples include the competition between buoyancy
and shear in inclined natural convection, Hart (1971), between rotation and buoyancy
in binary mixtures, Pearlstein (1981), between rotation and shear in Hagen–Poiseuille
flow, Cotton & Salwen (1981), between buoyancy-induced shear and rotation in ra-
dial Couette flow, Ali & Weidman (1990), and between rotation and axial sliding in
modulated Taylor–Couette flow, Marques & Lopez (1997). There are also examples
of complicated neutral curve topology in crystal–melt interface problems as studied
by McFadden et al. (1990). In the spiral Poiseuille problem the competition between
the shear effect induced by the imposed axial pressure gradient and the centrifugal
effect induced by the rotation is responsible for the aforementioned complexities.

Our study provides a first comprehensive numerical exploration of the linear
stability of the spiral Poiseuille flow, covering a wide range of angular velocities of the
inner and outer cylinders, both independent, and values of the axial Reynolds number.
The present work is focused on the co-rotation case. One of the motivations of this
particular exploration lies on the striking phenomena recently observed in a very
similar problem: the spiral Couette flow. In the spiral Couette flow, both cylinders
are rotating independently and the axial effect is induced via an inertial relative
sliding between the cylinders, see Joseph (1976). As a result, shear and centrifugal
instability mechanisms compete, leading to discontinuous transition Reynolds number
in the critical regime. Ludwieg (1964) reported the first experimental evidence of this
phenomenon and the first explanation of the mechanism of competition was provided
in Meseguer & Marques (2000). As in the spiral Couette problem, the spiral Poiseuille
problem also exhibits zeroth-order discontinuities in its critical surface. In both
cases, this pathology has a common mathematical explanation: the spectrum of the
linearized Navier–Stokes operator exhibits dramatic changes in the space of physical
parameters. In other words, the spectrum may be, in both problems, split up in two
independent subsets, associated with shear and centrifugal instability mechanisms.
The behaviour of both subsets is independent of each other, radically swapping
their dominance in the transition in co-rotating situations. When the cylinders are
counter-rotating the centrifugal mechanism always dominates the axial shear.

Spiral Poiseuille flow is of importance in a number of chemical, electrical and
mechanical engineering applications. The cooling of rotating electrical machinery by
means of a rotor-mounted fan is but one example. An understanding of the fluid
motion is needed to predict the rotor operating temperature through consideration
of heat transfer to the coolant, which may increase dramatically when the centrifugal
instability leads to the incidence of Taylor vortices within the laminar tangential
boundary layer, Becker & Kaye (1962). In addition, a better understanding of the
stability of these flows could have applications in some industrial processes like the
purification of industrial waste water, Ollis, Pellizetti & Serpone (1991), the production
of wire and cables, Tadmor & Bird (1974), and optical fibre fabrication techniques,
Chida et al. (1982).

The paper is structured as follows. In § 2, the spiral Poiseuille problem is formulated
mathematically. The equations are rendered dimensionless and the three dynamical
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parameters Ri, Ro and Re are defined. The basic steady flow is obtained analytically
assuming independence with respect axial and azimuthal coordinates. In § 3, we
formulate the linear stability analysis for infinitesimal perturbations. The formulation
leads to a generalized eigenvalue problem which must be solved numerically. In § 3.1,
the symmetries of the linearized problem are considered in order to simplify the
exploration in the space of physical parameters. A characterization of the secondary
flows is provided by means of the geometrical features of the critical eigenvectors
obtained from the linearized problem. From the Petrov–Galerkin formulation, a
first integral of the perturbation field is obtained in order to visualize the structure
of the secondary spiral flows appearing in the transition. In § 3.2, the conditions
for criticality are introduced, following the same formulation used in Meseguer &
Marques (2000) for the stability of spiral Couette flow. Section 4 is devoted to the
numerical exploration of the linear stability. In § 4.1, we compare our numerical
results with those provided in Takeuchi & Jankowski (1981), both numerical and
experimental. In § 4.2, a comprehensive exploration of the co-rotating situation is
presented. The numerical computations reported here were carried out for the same
experimental parameters used in Takeuchi & Jankowski (1981). Section 5 is devoted
to rigid-body rotation in the spiral Poiseuille problem. We compare the asymptotic
critical regimes of three different flows in which shear and centrifugal mechanisms
compete: rotating Hagen–Poiseuille flow, spiral Couette flow and spiral Poiseuille
flow. For this purpose, a suitable axial Reynolds number is defined for the three flows
in order to make the comparison meaningful from a physical point of view.

2. Formulation of the problem
We consider an incompressible fluid of kinematic viscosity ν and density ρ which

is contained between two concentric rotating cylinders whose inner and outer radii
and angular velocities are r∗i , r∗o and Ωi, Ωo respectively. In addition, the fluid is
driven by an imposed axial pressure gradient (∂P ∗/∂z∗) = constant. The independent
dimensionless parameters appearing in this problem are: the gap between the cylinders
d = r∗o − r∗i ; the radius ratio η = r∗i /r∗o , which fixes the geometry of the annulus; the
Couette flow Reynolds numbers Ri = dr∗i Ωi/ν and Ro = dr∗oΩo/ν of the rotating
cylinders and the Poiseuille number, P = (∂P ∗/∂z∗)d3/ρν2, measuring the imposed
axial pressure gradient.

Henceforth, all variables will be rendered dimensionless using d, d2/ν, ν2/d2 as
units for space, time and the reduced pressure (p∗/ρ∗), respectively. The Navier–
Stokes equation and the incompressibility condition for this scaling become

∂tv + (v · ∇)v = −∇p+ ∆v, ∇ · v = 0. (2.1)

Let v = uer + veθ + wez , the physical components of the velocity v in cylindrical
coordinates (r, θ, z). The boundary conditions for the flow described above are

u(ri) = u(ro) = 0, (2.2)

v(ri) = Ri, v(ro) = Ro, (2.3)

w(ri) = 0, w(ro) = 0, (2.4)

where ri = η/(1− η) and ro = 1/(1− η). The steady velocity field vB independent of
the axial and azimuthal variables that satisfies this condition is

uB = 0, vB = Ar +
B

r
, wB = C ln

(
r

ro

)
+
P

4
(r2 − r2

o), (2.5)
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Figure 1. Physical description of the spiral Poiseuille problem. The basic axial–azimuthal flow is
also represented.

where the constants A, B and C are

A =
Ro − ηRi

1 + η
, B =

η(Ri − ηRo)
(1− η)(1− η2)

, C =
1

ln η

P (1 + η)

4(1− η)
. (2.6)

A geometrical description of the problem can be found in figure 1. The azimuthal
component of the basic flow is dictated by the Couette flow and the axial component is
a superposition of logarithmic and parabolic profiles. The basic vector field (0, vB, wB)
is represented in figure 1.

Following Takeuchi & Jankowski (1981) and other previous works, we will make
use of the axial Reynolds number Re = w̄d/ν as a measure of the imposed axial
effect, where w̄ is the mean axial flow in the annulus,

w̄ =
1

π(r∗o2 − r∗i 2)

∫ 2π

0

∫ r∗o

r∗i
w∗Br

∗ dr∗ dθ, (2.7)

where w∗B stands for the dimensional basic flow. A straightforward calculation leads
to the explicit relation between the Poiseuille number and the axial Reynolds number:

P =
8(1− η)2 ln η

η2 − (1 + η2) ln η − 1
Re. (2.8)

3. Formulation of the linear stability analysis
The basic flow is perturbed by a small disturbance which is assumed to be periodic

in the azimuthal and axial coordinates:

v(r, θ, z, t) = vB(r) + ei(nθ+kz)+λtu(r), (3.1)

p(r, θ, z, t) = pB(r, z) + p′(r)ei(nθ+kz)+λt, (3.2)
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where vB = (0, vB, wB) is given by (2.5), n ∈ Z, k ∈ R and λ ∈ C. In addition, the
perturbation of the velocity field must satisfy the solenoidal condition

∇ · [ei(nθ+kz)u(r)] = 0, (3.3)

where u must satisfy homogenous boundary conditions

u(ri) = u(ro) = 0. (3.4)

Formal substitution of the perturbed fields (3.1) and (3.2) in the Navier–Stokes
equations leads to the eigenvalue problem

λu = −∇p′ + ∆u− vB · ∇u− u · ∇vB, (3.5)

where the nonlinear terms have been neglected. Condition (3.3) means that the
solution eigenvectors of equations (3.5)–(3.4) must satisfy the constraint(

d

dr
+

1

r

)
u+ i

(n
r
v + kw

)
= 0. (3.6)

The boundary value problem (3.5)–(3.4), conditioned to (3.6), is numerically discretized
making use of a solenoidal Petrov–Galerkin spectral method which was used in
Meseguer & Marques (2000) for the stability analysis of the spiral Couette problem.
The discretization leads to a generalized eigenvalue problem for the Mth order
spectral approximation of the velocity field xM:

λG(η, n, k)xM = H(Ri, Ro, Re, η, n, k)xM, (3.7)

where xM is given by the expression

xM(r) =

M∑
m=0

a(1)
m u

(1)
m (r) + a(2)

m u
(2)
m (r). (3.8)

The solenoidal vector fields u(1)
m and u(2)

m form a basis in the space of solutions of the
problem and are given by the expressions

u(1)
m (r) = −rkhm(r) eθ + nhm(r) ez (3.9)

and

u(2)
m (r) = −ikfm(r) er +

(
d

dr
+

1

r

)
fm(r) ez. (3.10)

The functions fm and hm are combinations of Chebyshev polynomials; their detailed
structure can be found in Meseguer & Marques (2000, § 3). In equation (3.7), the linear
operator G depends only on the radius ratio and the axial and azimuthal wavenumbers
of the perturbation. The operator H depends on the the same set of variables and on
the dynamical parameters of the problem (Ri, Ro, and Re) as well. Explicit expressions
for the operators G and H for a generalized axial–azimuthal basic flow (0, vB, wB) can
be found in Meseguer & Marques (2000, appendix A). The problem is then reduced
to the computation of the spectrum of eigenvalues of (3.7). If, for a given set of the
previous parameters, the whole spectrum lies on the left side of the complex plane,
then the basic flow will be stable with respect to infinitesimal perturbations. On the
contrary, if one of the eigenvalues of the spectrum has positive real part, then the
basic spiral Poiseuille flow will become linearly unstable. The condition of criticality is
obtained by requiring the rightmost eigenvalue of the spectrum of (3.7) to have zero
real part. This condition must be imposed for each set of values of the physical and
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normal mode parameters, introducing an implicit dependence between the parameters
of the perturbation (n, k) and the set of Reynolds numbers (Ri, Ro, Re). Overall, the
computational cost of the numerical exploration might be very high. Some advantage
can be taken from the symmetries of the operators G and H in (3.7) in order to
reduce the parametric exploration of the linear stability.

3.1. Symmetries and characterization of bifurcated solutions

Equations (2.1) are invariant with respect to the specular reflections {z → −z,
w → −w} and {θ → −θ, v → −v}. They are also invariant with respect to rotations
around the axis, axial translations and time translations. Boundary conditions (2.2),
(2.3) and (2.4) break some of these symmetries. For example, Ri or Ro different from
zero breaks the specular reflection θ → −θ, and Re 6= 0 breaks the specular reflection
z → −z. In order to keep the invariance we must change the sign of these Reynolds
numbers, and of the corresponding wavenumbers n and k in the solutions of the
linearized system (3.7). Obviously, the symmetries allow us to restrict the exploration
to the cases Re > 0 and Ri > 0. Furthermore, since the Navier–Stokes equations are
real, the complex conjugate of a perturbation (3.1), (3.2) is also a solution, and we
can change simultaneously the sign of n, k and the imaginary part of λ. Therefore,
the exploration in the normal mode analysis can be reduced to the case k > 0 and
n = 0,±1,±2, . . . .

Near criticality, the geometrical features of the bifurcated flows can be predicted
from the spatio-temporal structure of the critical eigenvectors of (3.7). When axi-
symmetric modes, n = 0, are dominant in the transition, the bifurcated pattern is
the Taylor vortex flow, provided that k 6= 0. In addition, if the imaginary part of
the rightmost eigenvalue, ω = Im λ, is not zero, these Taylor vortices will travel in the
axial direction with constant axial speed c = ω/k. When n and k are non-zero, the
eigenvector of the linear problem has the form of a spiral pattern. The wavenumbers
n and k, together with ω, fix the shape and speed of the spiral. The angle α of the
spiral with a z-constant plane is given by tan α = −n/(rok) = −(1− η)n/k; the speed
of the spiral in the axial direction (on a θ-constant line) is c = −ω/k, and in the
azimuthal direction (on a z-constant line) it is ωsp = −ω/n.

The perturbation fields defined in (3.1) are invariant under spiral-like transforma-
tions

dz

dθ
= −n

k
. (3.11)

Making use of the spiral coordinate ζ = nθ + kz, the solenoidal condition (3.6) can
be expressed as

∂

∂r
(ru) +

∂

∂ζ
(nv + rkw) = 0. (3.12)

Equation (3.12) implies the existence of a first integral χ of the perturbation field
satisfying

∂χ

∂ζ
= −ru, (3.13)

∂χ

∂r
= nv + rkw. (3.14)

From equation (3.14), and making use of the spectral approximation of the pertur-
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bation field (3.8), we obtain the expression for the first integral χM

χM = kr

M∑
m=0

a(2)
m fm(r), (3.15)

provided that k 6= 0. The fluid particles are constrained to move in spiral isosurfaces
defined by the equation

Re

{
ei(nθ+kz)kr

M∑
m=0

a(2)
m fm(r)

}
= const. (3.16)

The first integral χ will be used later in order to represent the spiral component of
the bifurcated solutions.

3.2. Computation of the critical values

In this section, we proceed to formulate the mathematical condition of criticality
following the procedure used in Meseguer & Marques (2000) for the stability analysis
of spiral Couette flow. Let σ be the real part of the rightmost eigenvalue of the
spectrum of (3.7). For negative values of σ, the basic flow is stable under infinitesimal
perturbations. When σ is zero or slightly positive, the steady flow becomes unstable
and bifurcated secondary flows may appear. As mentioned before, the spectrum
depends on the physical parameters and the axial and azimuthal wavenumbers of
the perturbation. As a consequence, σ(Ri, Ro, Re, η, n, k) is a function which implicitly
depends on these variables. For fixed values of η, Ro, Re, and a (n, k)-azimuthal–
axial normal mode given, the inner Reynolds number Rci (n, k) such that σ = 0 is
computed. The critical inner Reynolds number is given by Rcrit

i = minn,k R
c
i (n, k), and

the corresponding values of n, k are the critical azimuthal and axial wavenumbers
ncrit, kcrit which will dictate the geometrical shape of the critical eigenfunction, as
mentioned in § 3.1. Furthermore, the imaginary part of the critical eigenvalue, ωcrit,
gives the angular frequency of the critical eigenfunction. Again, the critical values
ncrit, kcrit and ωcrit are implicit functions of the parameters η, Ro and Re.

The critical condition σ(k, Ri) = 0 implicitly defines Ri as a function of the axial
wavenumber k. The curve Ri = g(k), usually termed the neutral stability curve (NSC),
fixes the boundary between stable and unstable situations. Therefore, the critical
parameter Rcrit

i is the absolute minimum of g(k) for some value k = kcrit. This
computation must be carried out for different values of n. As reported in Meseguer &
Marques (2000), the NSC curves may have multiple extrema (maxima and minima),
and exhibit disconnected parts and sharp geometrical forms. Furthermore, these curves
may exhibit multivalued branches as functions of k, and these features can change
abruptly in some ranges of the parameters. At this stage, we proceed to compute the
critical values using a modified Newton–Raphson method the reliability of which was
checked in Meseguer & Marques (2000) for the stability analysis of spiral Couette
problem. The Petrov–Galerkin scheme used for the numerical approximation of the
eigenvalue problem provided spectral accuracy. A convergence test of the spectral
scheme can be found in Meseguer & Marques (2000, table 1).

4. Numerical results
This section is devoted to the numerical exploration of the linear stability of the

basic flow. The study is focused on the co-rotation zone (RiRo > 0) and for the
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Re TaL = Rci kc nc cl = ωc/kcRe

20 77.8415 (77.84) 3.1943 (3.19) 0 1.1778 (1.176)
70 102.6758 (102.7) 3.9501 (3.95) 4 1.8323 (1.834)

Table 1. Critical values for the case µ = 0 and η = 0.5. The reported figures are those that
apparently converged in the spectral method. The bracketed numbers correspond to the values
obtained in Takeuchi & Jankowski (1981), table 1.

wide gap case η = 0.5 in order to compare our results with previous experimental
and numerical data provided in Takeuchi & Jankowski (1981). Some explorations
were carried out for the counter-rotating case, but the results did not provide any
information not already reported in previous works. When the cylinders are rotating
with opposite signs of angular speeds, the centrifugal mechanism is dominant over
the axial shear, as already concluded in Meseguer & Marques (2000), where the shear
was induced by a relative axial sliding between the cylinders. On the other hand, when
both cylinders rotate with the same orientation, the axial shear instability mechanism
may become dominant over the centrifugal one.

4.1. Comparison with previous results

In Takeuchi & Jankowski (1981, henceforth referred as TJ), three different explorations
were carried out for different values of the rotation ratio µ = ηRo/Ri. We have
computed the critical values for the case µ = 0, Ro = 0 in our notation, and compared
with corresponding results reported by TJ in table 1; the numerical agreement is very
good. The parameter Ta = ηRi/(1 − η) appearing in table 1 is the Taylor number,
used in previous works as a measure of the angular speed of the inner cylinder, and its
numerical value coincides with Ri for η = 0.5. The axial wavenumber kc corresponds
to αL in the formulation used by TJ, where the subindex L stands for the linear critical
value obtained with their numerical method. The last column of the table reports
the axial speed of the bifurcated solution, cL = ω/kcRe, based on the time-scaling
considered in TJ.

In figure 2(a), we show the critical inner Reynolds number Rci as a function of
the axial Reynolds number Re for µ = 0. Our numerical computations for this
case are not distinguishable from TJ’s numerical results within plotting accuracy.
One of the most remarkable features is that the axial effects stabilize axisymmetric
as well as non-axisymmetric azimuthal modes. This stabilization is maximum at
Re ∼ 60. For larger values of Re, the stability effect decreases, eventually reversing
for Re large enough. For low axial Reynolds number, the bifurcating pattern is a
travelling Taylor vortex flow (n = 0), since cL 6= 0 in the range of values of axisym-
metric dominance, as reported in table 1 of TJ. As the axial effect is increased,
the dominant modes become non-axisymmetric, associated with spiral secondary
flows.

Our study is concerned with the computation the absolute instability of the spiral
Poiseuille flow. The convective instabilities would correspond to perturbations which
grow with respect to a system of reference which is moving with constant axial speed.
Therefore, these kinds of disturbances undergo only a transient growth with respect
to a steady system of reference, provided that they are confined to a bounded spatial
domain, and they eventually decay. The comparison with the experiments is difficult
since there is a spatial transient in the development of the basic axial parabolic
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Figure 2. (a) Rci as a function of Re for µ = 0. The circles are located at the transition between
different dominant azimuthal modes, n = 0, 1, . . . , 6. (b) Critical axial wavenumber, kc for the same
set of parameters. (c) Angle of the spiral pattern. The experimental results provided in Takeuchi
& Jankowski (1981) are represented with black squares. Those in (c) were obtained from the
corrigendum.

profile. The axial Poiseuille component needs a characteristic length to be completely
developed and this length grows when the axial Reynolds number, Re, is increased. If
the pipe is not long enough, the fluid may already have left the annular domain before
the axial component of the spiral Poiseuille flow has been completely developed. As
a result, what TJ observed for high values of Re was only this transient mechanism.
In other words, for a fixed length of the annular pipe, there is always a threshold
value of the axial Reynolds number above which the basic flow is never completely
developed. A discrepancy between the numerical predicted values of transition and
experimental results can be observed in figure 2(a), which increases with Re. In
figure 2(b) we represent the critical axial wavenumber kc as a function of Re for the
same set of parameters. The computed angle of the bifurcated spiral pattern is plotted
in figure 2(c) and compared with the corrected experimental data provided by TJ in
their corrigendum.
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Figure 3. Rci as a function of the axial Reynolds number for low values of Ro = 0 (bottom), 5,
10, . . ., 50 (top). The dominant azimuthal modes are labelled from 0 to 6. The transitions between
different azimuthal modes are represented with circles.
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Figure 4. Critical curve Rci (Re) for Ro = 450. The integer numbers near the curve stand for the
dominant azimuthal numbers n = 1, 2, . . . , 6. The circles are located at the transition point between
different azimuthal modes. The dashed vertical line is located at the point of discontinuity. Points
A, B1, B2, C and D correspond to figures 5(a) to 5(d ), see text.

4.2. Exploration in the co-rotation zone

The critical behaviour for low values of Ro is qualitatively the same as for the case
Ro = 0, previously discussed. In figure 3, we represent the critical inner Reynolds
number Rci as a function of the axial Reynolds number Re in the range of outer
rotation values Ro ∈ [0, 50]. It can be observed that the axisymmetric mode n = 0 is
always dominant for Re = 0, being stabilized as Re is slightly increased from that
limit value. The first non-axisymmetric modes n = 1, 2 are stabilized by the axial
effects although n = 3 is only stabilized in a small range of values of Ro. Higher
non-axisymmetric modes are always destabilized.

This behaviour is no longer valid for higher values of Ro. In figure 4 we plot the
critical curve for Ro = 450. The first relevant feature is that Rci is almost independent
of Re for axisymmetric disturbances. The first non-axisymmetric modes n = 1 and
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Figure 5. Formation of an island of instability for η = 0.5 and Ro = 450. The different branches
are identified by their corresponding azimuthal numbers.

n = 2 are destabilized by the axial effect. In the range of values where n = 3 is
dominant, the critical curve exhibits a zeroth-order discontinuity for Re = 86.26
(dashed vertical line) n = 6 being the dominant mode for higher values of Re. If
we consider Rec as a function of Ri, the critical curve is continuous and this can be
used to compute the hidden branch, where the modes n = 3, 4 and 5 are dominant.
In figure 5 we describe this phenomenon by means of the topological features of the
neutral stability curves for Ro = 450. In figure 5(a), we represent the neutral stability
curve for n = 3 and Re = 80 (point A in figure 4) where the critical value Rci = 832.3
is reached for kc = 6.55. For Ro = 90 (figure 5b), the centrifugal mode n = 3 has
a critical value Rci = 787.2 (point B1, figure 4) but the shear mode n = 6 develops
an island of instability whose minimum is located at kc = 0.892 and Rci = 235.6,
thus being dominant (point B2, figure 4). For Ro = 105, the island of instability
has grown in size (figure 5c) with a critical Reynolds number Rci = 221.3 (point C,
figure 4). For Ro = 110, the neutral stability curve associated with the shear mode
becomes connected (figure 5d ) with a minimum value Rci = 213.5 (point D, figure 4).
In order to detect these topological anomalies as soon as they appear, a modified
Newton–Raphson method already formulated in Meseguer & Marques (2000) has
been used.

For fixed values of Ro and Re, three different spiral regimes can be observed in
the transition, depending on the value of the inner rotation Reynolds number Ri. In
figures 6, 7 and 8 the essential features of the three different spiral regimes along
the folded critical curve Ro = 450 for a fixed axial Reynolds number Re = 100
are depicted. The first plot (a) shows isolines of the first integral χ, computed from
equation (3.16), in the (r, z)-plane; these curves are sections of the χ isosurfaces where
the particles are constrained to move. The second plot (b) shows isolines of vθ , which
provides the complete structure of the spiral once χ is given. Both these representations
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Figure 6. (a) Radial-axial cross-section of χ-eigenmode (b), azimuthal component of the velocity
field vθ and (c) three-dimensional representation of a χ = const isosurface. In (a) and (b), shaded
regions correspond to negative values of the represented variable. Centrifugal branch: Ro = 450,
Re = 100, Rci = 722.9, kc = 5.549 and nc = 4.

have been done using the same radial–axial aspect ratio in order to emphasize the
characteristic length of the spiral regime in each case. Finally, plot (c) is which a
three-dimensional visualization of one of the χ = const-isosurfaces which provides a
better understanding of the secondary pattern. In all three plots, we have depicted
only the eigenfunction corresponding to the critical eigenvalue, omitting the basic
flow. For the spiral Poiseuille problem, the basic flow contributes a constant factor
to the χ first integral, leaving the mean geometric features of the spirals invariant.
In figure 6 the spiral regime corresponding to the centrifugal branch is represented,
where the critical azimuthal value is nc = 4 and Rci = 722.9. In this case, the angle of
the spirals is very low, α ∼ 20◦, and the highest gradients in the azimuthal velocity vθ
are mainly concentrated near the inner radius, where the centrifugal effects are more
dominant. Also, the azimuthal speed is very low in the medium gap and near the
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Figure 7. Same as figure 6 for the hidden branch: Ro = 450, Re = 100, Rci = 415.4,
kc = 2.293 and nc = 5.

outer wall. The hidden branch is represented in figure 7, where the azimuthal mode
is nc = 5 and Rci = 415.4. In this branch, the angle of the spirals has increased to
α ∼ 48◦ and the distribution of azimuthal component of the velocity has spread to
the whole gap. Finally, in figure 8 we plot the spiral pattern corresponding to the
shear branch, for nc = 6 and Ri = 232.2. The spirals are almost parallel to the axis in
the last case, with an approximate angle of α ∼ 74◦.

Figure 9 summarizes the behaviour of Rci for different values of Ro; we represent
the critical curves of the co-rotating spiral Poiseuille flow in the range Ro ∈ [0, 450]
and Re ∈ [0, 125]. In figure 10 we represent the critical surface where the folding can
be better visualized. The curve corresponding to the numerical results obtained in
TJ for the particular co-rotating case µ = 0.2 is also plotted in order to emphasize
that their explorations were carried out far away from the cuspidal zone where the
discontinuities may appear. A two-dimensional projection of the transition curves
between different azimuthal modes is plotted in figure 11; the projections of the
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Figure 8. Same as figure 6 for the shear branch: Ro = 450, Re = 100, Rci = 232.2,
kc = 0.888 and nc = 6.

maxima and minima of the folded surface are represented by dashed lines. These two
curves are the boundaries of the cuspidal zone where the discontinuities may appear
and they merge at the cuspidal point of coordinates Ro = 243.1, Re = 80.35.

Some similarities can be pointed out between the critical surface of the spiral
Poiseuille problem and the one obtained in Meseguer & Marques (2000) for spiral
Couette flow. First, the axisymmetric mode is always dominant for small values of Re
and the critical value Rci is almost independent of the axial effect as the outer rotation
number Ro is increased. Second, the threshold value of the axial Reynolds number
in the cuspidal zone of the spiral Couette flow was Rz = 73.41 which is agreement
with that obtained for the cuspidal point of the spiral Poiseuille flow within 9%
relative error, Meseguer & Marques (2000). The range of dominant azimuthal modes
is slightly wider in the spiral Poiseuille flow. This phenomenon can be explained in
terms of the effective gap of the problem. In the next section, we will see that the
shear effect of a spiral Poiseuille flow with η = 0.5 is qualitatively equivalent to the
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Figure 9. Critical curves Rci as a function of the axial Reynolds number Re for Ro = 0, 50,
100, . . . , 450. The circles are located at the transition between different azimuthal modes n.
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Figure 10. Three-dimensional representation of the critical surface for the spiral Poiseuille flow.
The labels n = 0, . . . , 6 are located in the zones of dominance of different azimuthal modes whose
boundaries are depicted by thicker lines. The arrow indicates the curve where the computations for
the case µ = 0.2 were carried out in Takeuchi & Jankowski (1981).

shear effect produced by a spiral Couette flow with effective radius ratio ηeff ∼ 0.73.
As the radius ratio approaches the unity, the axial shear effect becomes more and
more dominant and the range of dominant azimuthal modes increases rapidly, as
already concluded in Meseguer & Marques (2000) and Ludwieg (1964) for the small
gap case η = 0.8 in spiral Couette flow.

In figure 12(a) we plot the axial speed of the spirals, c = −Im(λ/k), for different
values of the outer rotation Reynolds number Ro as a function of the axial Reynolds
number Re. The speed of the spirals increases dramatically above the threshold
Reynolds number Ro = 243.1, where the shear mechanism becomes dominant. This
is reflected in the plot for the curves Ro = 300 and Ro = 400, where the discon-
tinuity appears. In the shear branch, the axial speed of the spirals is increased by
approximately 60% with respect to the centrifugal speed. The authors had observed
this already in the behaviour of the spirals in spiral Couette flow, where the relative
increase of the axial speed of the spirals was even bigger. For low values of the axial
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Figure 12. (a) Axial speed of the spiral pattern c as a function of Re, for different values of Ro.
(b) Angle of the spiral pattern.

Reynolds number Re the speed of the spirals increases almost linearly with respect to
Re. In particular, for Re 6= 0, the secondary solution is always advected downstream
with a non-zero axial speed. This is in contrast with the behaviour of spirals in
spiral Couette flow, where the secondary solutions were almost steady for low axial
Reynolds number, see Meseguer & Marques (2000), figure 7(d ). In figure 12(b), the
angle of the bifurcated spiral pattern is plotted as a function of the two Reynolds
numbers. In the shear branch, the spirals become almost parallel to the axis of the
cylinders, with angles between 70◦ and 80◦. After the cuspidal zone has been crossed,
the spirals reach an asymptotic regime where their angles are almost independent of
the axial Reynolds number Re.

5. The rigid-body rotation: overview
This section is devoted to the linear stability of spiral Poiseuille flow in the particular

case of both cylinders rotating with the same angular speed Ω, which is equivalent
to considering a linear dependence between the inner and outer rotation Reynolds
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Figure 13. Asymptotic regimes of the rigid-body rotation of the spiral Poiseuille flow. The circle is
located at the transition between the azimuthal modes n = 5 and n = 6.

numbers R = Ri = ηRo. In Meseguer & Marques (2000), the same problem was
studied for spiral Couette flow. In both cases, asymptotic values of the critical regime
have been obtained for high rotation rate R or high axial Reynolds number Re.
In Mackrodt (1976), a study of the stability of Hagen–Poiseuille flow (pipe flow)
with imposed rotation was reported, and those asymptotic regimes were computed.
Mackrodt showed that, although Hagen–Poiseuille flow is linearly stable for any axial
Reynolds number, the superposition of a slow rotation of the pipe may destabilize
the basic flow. And conversely, although the rigid-body rotation flow is linearly stable
for any angular speed, the superposition of a finite axial effect destabilizes the basic
flow. The same mechanism was observed in the spiral Couette flow between coaxial
cylinders rotating with the same angular speed. In the spiral Couette problem, the
axial effect was introduced by means of a relative axial sliding of the cylinders. For this
case, it was observed that the rigid-body rotation was stable in the absence of axial
effects. Correspondingly, the axial sliding flow was always stable when the rotation
was absent. In both cases the superposition of shear and centrifugal mechanisms
made the basic flow unstable. In figure 13, we plot the critical curve for the rigid-
body spiral Poiseuille flow. As in rotating Hagen–Poiseuille and spiral Couette flows,
two asymptotic regimes are found to be dominant: for high values of the rotation
Reynolds number R, finite Re, and for high values of the axial Reynolds number
Re, finite R. As the rigid-body rotation is increased, the critical curve reaches an
asymptotic value for Re∞centrif = 96.14, where the azimuthal mode in the transition
is a spiral regime n = 6 (centrifugal branch). When the axial effect is increased to
high values, the critical rigid-body rotation number R tends to an asymptotic value
R∞shear = 70.69 (shear branch), n = 5 being the dominant azimuthal mode.

In order to make a comparative analysis of the rigid-body rotation among rotating
Hagen–Poiseuille, spiral Couette and spiral Poiseuille problems, a suitable control
parameter for the axial shear effect needs to be properly defined. In Mackrodt (1976),
the axial Reynolds number for rotating Hagen–Poiseuille flow, ReHP , was obtained
in terms of the maximum value of the basic flow attained at the axis of the pipe.
In Meseguer & Marques (2000), the axial Reynolds number ReSC for spiral Couette
flow was obtained using the axial speed of the inner cylinder which coincides with the
maximum axial velocity of the logarithmic profile in the basic flow. As mentioned in
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the introduction, we have considered the axial mean flow speed as a measure of the
axial effect in the spiral Poiseuille problem. We adopted this convention following TJ
and other previous works. Nevertheless, in this section we shall consider an alternative
definition of the axial Reynolds number for spiral Poiseuille flow. The effective axial
Reynolds number is given by

Reeff =
UMdeff

ν
, (5.1)

where UM is the maximum axial dimensional speed of the basic flow and deff is the
effective gap

deff = r∗o − r∗M, (5.2)

which is the difference between the dimensional external radius r∗o and the value r∗M
at which the axial speed is maximum. In Mackrodt (1976) and Meseguer & Marques
(2000), the Reynolds numbers ReHP and ReSC were the effective values respectively
since the maximum axial speeds were attained at the inner radius ri in both cases. For
spiral Poiseuille flow this is no longer valid and we have to consider the maximum
speed wMB of the axial basic flow (2.5) attained at r = rM ,

wMB = wB(rM) =
2(1− η)2 ln η

η2 − (1 + η2) ln η − 1

[
1 + η

(1− η) ln η
ln

(
rM

ro

)
+ r2

M − r2
o

]
Re, (5.3)

where

rM =

[
− 1 + η

2(1− η) ln η

]1/2

. (5.4)

For the wide gap case η = 1/2, the numerical values of the previous expressions are

wMB =
ln(27/2 ln3 2)− 3

ln(32)− 3
Re ∼ 1.5078Re (5.5)

and

rM =

[
3

ln 2

]1/2

∼ 1.4711, (5.6)

very close to the mid gap value (ri + ro)/2 = 3/2. The corresponding effective radius
ratio is

ηeff =
rM

ro
= (1− η)

[
− 1 + η

2(1− η) ln η

]1/2

. (5.7)

The effective axial Reynolds number ReSP is obtained from (5.1), the value of wMB in
(5.3) and the value of deff obtained in (5.2):

ReSP = wMB
deff

d
= wMB

1− ηeff

1− η . (5.8)

For η = 1/2, the effective radius ratio has an approximate value of ηeff ∼ 0.7355 and
the axial Reynolds number obtained from the mean axial flow and the effective one
are related as follows:

ReSP ∼ 0.8035Re. (5.9)

As a result, the axial mean flow of the spiral Poiseuille problem contributes only 80%
approximately to the shear mechanism when it is compared with ReHP and ReSC .
Therefore, the asymptotic value Re∞ = 96.14 for the centrifugal branch should be
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Re∞eff |ns|
Rot. Hagen–Poiseuille 82.88 1
Spiral Couette 85.11 5
Spiral Poiseuille 77.26 6

Table 2. Threshold asymptotic values of the rigid-body rotation flow for rotating Hagen–Poiseuille
flow, from Mackrodt (1976), spiral Couette flow, from Meseguer & Marques (2000), and spiral-
Poiseuille flow, with the normalization explained in § 5. The first column reports the effective axial
Reynolds number. The second column contains the dominant azimuthal value |ns| in the shear
asymptotic branch.

renormalized to an effective value Re∞SP = 77.26. Table 2 summarizes the asymptotic
threshold values for the three flows. The agreement between the three asymptotic
axial Reynolds numbers ReHP , ReSC and ReSP is quite good, with a maximum
relative discrepancy of 5%.

6. Conclusions
A comprehensive exploration of the stability of spiral Poiseuille flow has been

presented and remarkable new features have been found in the critical regime. First,
the presence of islands of stability in the neutral stability curves is found to be
responsible for the discontinuities in the critical surface and the associated zeroth-
order discontinuities in the critical Reynolds number Rci . Second, the competition
between shear and centrifugal mechanisms of instability leads to a cuspidal region
in co-rotating situations where complex dynamics including hysteresis and mode
competition is likely to occur.

The characterization of the bifurcating eigenfunctions was carried out in detail,
particularly in the cuspidal region. The existence of a first integral for the particles
trajectories is used to visualize the bifurcating pattern near the critical points. Striking
differences are found between the bifurcating spiral structures in the shear, centrifugal
and hidden branches along the folded critical surface. The numerical results are in
good agreement with the currently available experimental data. Nevertheless, some
discrepancies appear as the axial effect is increased. This anomaly is apparently due
to finite length effects in the experiment as well as to visualization techniques.

The rigid-body rotation is reviewed in detail for three prototype flows where the
centrifugal and shear mechanisms compete: rotating Hagen–Poiseuille flow, spiral
Couette flow and spiral Poiseuille flow. A suitable axial Reynolds number for the
three flows is defined in order to make such comparison. The asymptotic threshold
values for instability in the shear branch appear to be qualitatively similar despite the
different nature of the three problems.

Overall, the instability mechanisms of spiral Poiseuille flow are qualitatively similar
to the ones observed in our analysis of spiral Couette flow (Meseguer & Marques
2000). Nevertheless, new experiments are needed to confirm the existence of the
cuspidal region, and to explore the rich dynamics associated with it.

This work was supported by DGICYT grant PB97-0685 and Generalitat de
Catalunya grant 1999BEAI400103 (Spain).
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